
Trigger Relationship Aware Mobile Traffic Classification
Heyi Tang

tangheyi.09@gmail.com

Tsinghua University

Yong Cui
∗

cuiyong@tsinghua.edu.cn

Tsinghua University

Jianping Wu

jianping@cernet.edu.cn

Tsinghua University

Xiaowei Yang

xwy@cs.duke.edu

Duke University

Zhenjie Yang

zhenjie.jesse.yang@gmail.com

Tsinghua University

ABSTRACT
Network traffic classification is important to network operators

to ensure visibility of traffic. Network management, monitoring,

and other services are built upon such classification results for

improving quality of service. Compared with traffic classification

in non-mobile setting, classification in mobile settings focuses on

applications and has become increasingly important. Traditionally,

a rule-based method is deployed in a deep packet inspector (DPI)

engine for traffic classification. However, with the explosive growth

in application usage, the complicated relationships including the

use of content delivery networks (CDN) and sharing behaviors

among applications make such methods less effective. The traffic

may be identified wrongly when one application is connected to

another application’s server.

In this work, we present TRAC: Trigger Relationship Aware
traffic Classification, a systematic framework for classifying mo-

bile traffic accurately. In TRAC, we first propose Trigger Relation-
ship Graph model to describe the relationships among applications.

Then, we introduce a Trigger Relationship Analyzer to build the

graph based on a modified frequent item set mining method. TRAC

classifies the traffic based on the application labels identified by

a DPI engine. An Application Label Corrector is designed to cor-

rect the application labels based on the graph. We evaluate TRAC

with one-month data collected from an enterprise network. The

evaluation shows that our method can achieve a 17.4% accuracy

improvement, from 64.8% to 82.2%.

ACM Reference Format:
Heyi Tang, Yong Cui, Jianping Wu, Xiaowei Yang, and Zhenjie Yang. 2019.

Trigger Relationship Aware Mobile Traffic Classification. In IEEE/ACM
International Symposium on Quality of Service (IWQoS ’19), June 24–25, 2019,
Phoenix, AZ, USA. ACM, New York, NY, USA, 10 pages. https://doi.org/10.

1145/3326285.3329050

∗
Corresponding Author

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than ACM

must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,

to post on servers or to redistribute to lists, requires prior specific permission and/or a

fee. Request permissions from permissions@acm.org.

IWQoS ’19, June 24–25, 2019, Phoenix, AZ, USA
© 2019 Association for Computing Machinery.

ACM ISBN 978-1-4503-6778-3/19/06. . . $15.00

https://doi.org/10.1145/3326285.3329050

1 INTRODUCTION
Network operators desire to identify an application by the traffic it

generates, this problem is called traffic classification. Such a prob-

lem has become increasingly important due to the growing use

of mobile phones, on which a variety of applications are installed.

Fine-grained classification of applications is required to achieve

improved quality of service (QoS). For instance, a network operator

can optimize QoS of certain applications (e.g., cloud gaming [10]

and video streaming [40]). Enterprise network operators are also

motivated to improve the quality of online meeting. By identifying

the applications, firewalls can block known malicious applications

or applications incompatible with cooperate policies.

To address this problem, some studies [3, 11, 25, 28, 33] use

machine learning approaches to mine statistical features for clas-

sification. However, these approaches require much labeled data

and are difficult to deploy in practice due to their high computa-

tional complexities. Another direction is to find reliable identifiers

in network traffic. Numerous studies have attempted to find identi-

fiers in different fields, including HTTP UserAgents [36], Android

Manifest.xml [30], URL parameters [37] and domain names [34].

The identifiers are embedded in a rule-based matching algorithm

deployed in a DPI engine. Then each TCP flow is associated with

an application in the DPI engine. Such methods are more computa-

tionally efficient and are widely used in practice.

However, through an in-depth study on a real-world dataset, we

find limitations on such methods resulting from the complex rela-

tionships among applications. For example, with the rapid growth

of cloud services, large numbers of applications are storing their

resources in clouds (such as AWS, Azure, and Alibaba Cloud). From

the DPI engine’s perspective, a flow originating from the cloud is

identified as deriving from an application provided by the cloud ser-

vice. However, the flow is actually triggered by an application using

the cloud service. Another typical relationship is sharing among

applications: one may share YouTube videos to Facebook, and thus,

some of the traffic generated by Facebook will be identified as being

from YouTube. The growing use of HTTPS [20] further complicates

this problem. This is because the only information that we can

obtain from the traffic is the certificate of the source domain (e.g.,

*.alicdn.com). The techniques that identify traffic by identifiers in

payloads do not work any more. In our evaluation with a real-world

dataset, a DPI engine with thousands of rules can only correctly

identify 64.8% of flows.

In this work, we investigate the above-mentioned problem and

find it common in real network traffic. One application may be

connected to the server owned by another application, and the

https://doi.org/10.1145/3326285.3329050
https://doi.org/10.1145/3326285.3329050
https://doi.org/10.1145/3326285.3329050

IWQoS ’19, June 24–25, 2019, Phoenix, AZ, USA Heyi Tang, Yong Cui, Jianping Wu, Xiaowei Yang, and Zhenjie Yang

DPI engine may give wrong application label to the flows. We

model such relationships among applications as a Trigger Relation-
ship Graph to solve the problem. We then present TRAC: Trigger
Relationship Aware traffic Classification; a framework for classi-

fying the traffic with the information from trigger relationships

(§ 2).

In order to build the trigger relationship graph, TRAC runs a

Trigger Relationship Analyzer offline to find trigger relationships

from unlabeled traffic. We propose a relationship mining algorithm

to analyze such traffic based on modified frequent item set mining

methods (§ 3).

As for classifying the traffic online, TRAC is designed based

on an exsiting DPI engine. The DPI engine gives each flow an

initial application label, which may be wrong. Then TRAC runs

an Application Label Corrector to update the initial labels with the

trigger relationship graph (§ 4). The updating problem is modeled

with maximum a posteriori (MAP) estimate and proved NP-hard.

Inspired by the MAP model, we compute application priorities and

design a heuristic algorithm for updating the labels and improve

accuracy.

Finally, we implement and deploy TRAC framework in an enter-

prise network (§ 5). Then we collect one month of real-world data

to evaluate our system, the results show that TRAC can improve

the application classification accuracy from 64.8% to 82.2% (§ 6).

2 TRAC OVERVIEW
In this section, we first discuss the background of traffic classifica-

tion and the problem caused by the application relationships. Then,

we present the trigger relationship model and the design of TRAC

framework to solve the problem.

2.1 Traffic Classification Problem
The goal in the traffic classification problem is to give all the TCP

flows passing through the router with an application label, so the

results can be used for further analysis. The problem is formalized

as follows. Given a sequence of TCP flows F = {F1, ..., Fn }, an
application set A = {A1, ...,Am }, for each flow Fi , we assign an

application label to Fi as Fi .label ∈ A.

In practice, the most common method is rule-based classification.

In a typical rule-based framework shown in Figure 2a, a Rule Gener-
ator is run offline to find reliable identifiers and obtain rules. Then,

a DPI Engine is run online to assign each incoming flow an applica-

tion label. With the prepared rules generated by the rule generator,

We can easily deploy an efficient identifier matching algorithm,

such as the Aho–Corasick algorithm [4], in the DPI engine.

2.2 Application Relationships
Although rule-based methods are widely studied [18, 19, 30, 34,

36–38], we find that their accuracy is not satisfactory in practice.

Sometimes, a user is using application A, while the DPI engine

shows that the user is using both applications A and B. Through
the analysis of such applications and traffic, we find that there are

two typical scenarios, shown in Figure 1. One scenario is the use

of cloud CDN; the other involves the sharing behaviors among

application.

App A

App B

App C
(a) App B provides cloud CDN for
storing the resources of A and C

App A

App B App C
(b) The contents from B and C are
shared in social network A

Figure 1: These figures show examples of typical scenarios in
which the traffic of one application occurs in another application.

The first scenario is that one application fetches data from a

cloud server belonging to another application. As Figure 1a shows,

Youku is a video service, Weibo is a social network, and Alibaba

Cloud provides cloud services for the two applications.When Youku

or Weibo is running, some data is fetched from the server with their

own domains and can be accurately recognized. However, static

resources, such as images and style sheets, are often stored in the

CDN, while the CDN servers use the domain of Alibaba. Thus, the

traffic is classified as that of Alibaba Cloud wrongly.

The second scenario is that the content of one application is

shared in another application. As Figure 1b shows, A user may share

videos from YouTube and images from Flicker in Facebook. Then,

when the friends of the user browse the news feed of Facebook,

contents from both YouTube and Flicker can be viewed in Facebook

and generate corresponding traffic. From the perspective of the DPI

engine, the traffic includes data from not only Facebook but also

YouTube and Flicker. In this scenario, the traffic is also wrongly

classified.

Youku, Weibo, YouTube and Flicker are all popular applications,

which generate a large amount of traffic in the Internet. These

scenarios lead to a serious decline in accuracy.

Besides, there are other scenarios worth discussing. For example,

map services are embedded in many other applications, while the

traffic is detected as that of a map application. Shopping applica-

tions may request third-party payment services. News applications

contain HTML links to many other websites. All these scenarios

can cause mismatches between traffic classification results and the

application being used.

2.3 TRAC Design
According to the observation, we have found the root cause of

the decline in accuracy. Here comes a question: can we avoid such
mistakes and improve accuracy? With the analysis of the scenarios,

we define the Trigger Relationship Graph and propose the TRAC
framework to solve the problem.

In the above scenarios, the traffic from wrongly identified appli-

cations is in fact triggered by the running application. Thus, we

define such a relationship between two applications as a Trigger
Relationship. All relationships among applications are represented

as a Trigger Relationship Graph.
Definition 1. Trigger Relationship Graph

LetA and B be two applications. WhenA is running, if the traffic

labeled as B is actually triggered by A, because of the connections
between A and the server owned by B, while B is not running, We

say that the two applications have a trigger relationship from A to

Trigger Relationship Aware Mobile Traffic Classification IWQoS ’19, June 24–25, 2019, Phoenix, AZ, USA

DPI
Engine

Raw
Traffic

Application
Usage Statistics

Rule
Generator

Prepared Rules

(a) The components of a traditional traffic classification framework

Trigger
Relationship
Analyzer

Trigger
RelationshipGraph

Application
Label

Corrector

DPI
Engine

Raw
Traffic

Application
Usage Statistics

Rule
GeneratorPrepared Rules

Online Module

Offline Module

(b) The components of the TRAC framework

Figure 2: These figures show the traditional traffic classification
framework and TRAC framework.

B. We indicate it as R = (A,B) LetA = {A1,A2, ...Am } be the set of

all applications. Let R = {(Ai1 ,Aj1), (Ai2 ,Aj2), ...(Ai3 ,Aj3)} be the

set of all trigger relationships. We define the trigger relationship

graph as follows:

G = (A,R)

With the trigger relationship graph model, The architecture

of TRAC is shown in Figure 2b, two extra components, the Trig-
ger Relationship Analyzer and the Application Label Corrector, are
introduced into the traditional DPI engine architecture. The trig-

ger relationship analyzer attempts to find all trigger relationships

among the applications to build a trigger relationship graph. It

runs offline and stores the trigger relationship graph. When TRAC

classifies the traffic online, the DPI engine first assigns an initial

label to each flow, then the application label corrector loads the

trigger relationship graph and corrects the application labels. There

are some key challenges to address for TRAC to achieve the design

goal.

2.4 Challenges of Each Component
2.4.1 Trigger Relationship Analyzer. The key challenges of the trig-

ger relationship analyzer are derived from large number of applica-

tions and the lack of information among them.

Specifically, form applications, each pair of them may have a

trigger relationship, and the total number of possible trigger rela-

tionships isO(m2). Taking into account the rapid growth of mobile

applications,m would be a very large number and it is constantly

increasing. To accurately describe the relationships among thesem
applications, the search space is undoubtedly enormous.

In addition, we do not have the ground-truth about trigger rela-

tionships. The usage of CDN and the sharing between applications

are two distinct scenarios of trigger relationships. The simplest way

is to analyze such scenarios and list all possibilities with human

experts’ domain knowledge. However, this cannot really solve the

problem, since there may be many other different scenarios whereA
is connected to B’s server. Essentially, we must investigate possible

trigger relationships in an unsupervised manner.

2.4.2 Application Label Corrector. The key challenges of the appli-

cation label corrector include the conversion between flows and

applications and the complexity of the trigger relationship graph.

The input of the application label corrector is the sequence of

incoming flows, while the existing relationships are among appli-

cations. The goal is to update the application labels of the flows;

thus, we must establish a bridge between the applications and the

flows, thereby converting the relationship between two applica-

tions to a relationship between two flows or between the flow and

the application.

Another challenge is that the trigger relationship graph is a

complicated graph, where all possible applications are in the graph.

For one flow, there are many different applications that may have

triggered the flow. Thus, we must find the application with the

highest probability to trigger such flow.

3 TRIGGER RELATIONSHIP ANALYZER
In this section, we introduce the design of the trigger relation-

ship analyzer. The goal of the trigger relationship analyzer is to

build a trigger relationship graph with collected TCP flows. We

first describe the workflow of it. Then, the details of each step are

described.

3.1 The Workflow
Our core objective in computing the trigger relationship is convert-

ing this problem to a frequent item set mining problem [8]. Frequent

item set mining is widely used in recommendation systems to find

relationships among different item sets. However, our scenario is

different from that of the original problem. Thus, our workflow is

aimed to convert our problem to a similar form to frequent item

set mining.

The workflow of the trigger relationship analyzer is shown in

Figure 3. First, we convert TCP flows to multiple application sets

so that the applications take on a form similar to the frequent item

set mining problem. Thus the relationships among applications can

be mined from the sets.

Given numerous application sets, we propose a trigger relation-

ship mining algorithm consisting of the following three methods. At

first, we define association relationships mined from the application

sets under some constraints. Association relationships under strict

constraints are treated as trigger relationships. Second, with an

application executor, we obtain application sets with known labels

and compute trigger relationships from such application sets. The

last method is determining uncertain relationships using domain

knowledges obtained from human experts.

By doing so, we obtain enough trigger relationships among the

applications. The relationships thus constitute a full trigger rela-

tionship graph.

3.2 Converting TCP Flows to Application Sets
First, we need to convert the TCP flows to application sets. Con-

sidering that if A triggers B, both the traffic labeled as A and B
can be observed at the same time. Thus we cluster the TCP flows

into multiple sets using proper time intervals. We use an existing

DPI engine to assign an application label Fi .labelDPI ∈ A for each

flow. The application labels of those flows can consist of an appli-

cation set in each period. An application set of a specific period is

as follows:

St,t+∆t = {Fi .labelDPI , Fi .tstar t < t + ∆t , Fi .tend > t}

With a proper time interval, we can easily traverse all the TCP

flows and generate many application sets.

IWQoS ’19, June 24–25, 2019, Phoenix, AZ, USA Heyi Tang, Yong Cui, Jianping Wu, Xiaowei Yang, and Zhenjie Yang

TCP Flows Application Sets

App Labels
App 1

App 1

App x

App y

Domain
Knowledge

Application Relationships Application Relationship Graph
Figure 3: This figure shows the steps of the trigger relationship analyzer

3.3 Relationships without Information
In the original frequent item set problem, the object is to compute

relationships among sets of items with support and conf idence .
Our problem aims at analyzing the relationships between every

two applications. Inspired by the definitions in frequent item set

problem, we propose the following definitions in our context.

Definition 2. Support
The support of an application A is defined as the number of the

application sets in the application set database S = {S1, S2, ...Sn }
that contain A. Therefore, the support sup(A) is defined as:

sup(A) = |{S, S ∈ S,A ∈ S}|

The support of two applications A, B requires S to contain both

A and B. Then it is defined as:

sup(A,B) = |{S, S ∈ S,A ∈ S,B ∈ S}|

Definition 3. Confidence
Let A and B be two applications. The confidence conf (A ⇒ B)

of the relationship A ⇒ B is the conditional probability of A and

B occurring in all applications sets given that the application sets

contain A. Therefore, the confidence conf (A ⇒ B) is defined as:

conf (A ⇒ B) =
sup(A,B)

sup(A)

Definition 4. Association Relationship
Let A and B be two applications. The relationship A ⇒ B is

said to be an association relationship with a minimum support of

minsup and minimum confidence ofminconf if it satisfies both of

the following criteria:

sup(A,B) ≥ minsup, conf (A ⇒ B) ≥ minconf

When any other information is absent, we compute the associ-

ation relationship between every pair of applications which have

occurred in the same application set. The association relationships

can be treated as trigger relationships if we use largeminsup and

minconf .

3.4 Relationships from Genarated Flows
However, we have observed that association relationships do not

always equal trigger relationships. For example, assuming that a

user does not install a video application A, while she usually uses

social network application B. The videos in A can be shared in B,
so the user can sometimes watch videos from A in B. As a result,
whenever A occurs in an application set, B will also occur since all

As are embedded in B. With the above definitions, we will obtain

the association relationship A ⇒ B. However, the direction of the

trigger relationship is actually from B toA. Thus, we need additional
techniques to compute more accurate relationships. We then use

generated flows for determining the correct direction.

First, we use an application executor to automatically execute the

known applications and capture the generated flows. The executor

runs each application and simulates user behaviors to generate

network traffic similar to real traffic. Android automation tools, such

as monkey-runner [1], are used to execute Android executables. Our

program in such executables checks user interface (UI) elements

in the application and generate UI events for simulating real users.

The traffic is captured on a router connected to the device.

The flows are then processed with the above-mentioned tech-

niques and converted to multiple application sets. Thus, we have

application sets with corresponding correct application labels. A

simple method is to let every application occurring in the set have

a trigger relationship with the correct application.

However, there are other applications running in the background.

This approach is not satisfactory since there may be no relation-

ship between background applications and the correct application.

Considering that the background applications are not always run-

ning, thus we take the support of the occurring applications into

consideration and use item set mining in the labeled scenario.

For each application A, we constrain the mining space to the

application sets with label A. Thus, we have an application set

database SA. We then define the support of application B on A as

supA(B). The confidence of B on A is defined as:

confA(B) = confA(B ⇒ A) =
supA(A,B)

supA(B)
With such definition, we then define the trigger set of A.

Definition 5. Trigger Set of A
The trigger set of A is defined as the set of applications which

could be triggered by A. By computing the support and the confi-

dence of applications on SA, the trigger set is formalized as follows.

TA = {B, supA(B) ≥ minsup, confA(B) ≥ minconf }

Only the applications which are highly relevant to A are added

to the TA. The background applications are ignored.

3.5 Relationships from Domain Knowledge
However, due to the lack of data, the above-mentioned techniques

cannot find all trigger relationships. The requirement for an asso-

ciation relationship is strict; the constraints on bothminsup and

minconf should be satisfied. Certain trigger relationships may only

satisfy one constraint.

To find as many trigger relationships as possible, we need to

check the details of the relationships among applications. We list

Trigger Relationship Aware Mobile Traffic Classification IWQoS ’19, June 24–25, 2019, Phoenix, AZ, USA

Incoming TCP flows Flows by users Applications with flows Filter background Sort by priority Update labels

AppA

AppB

AppC

Figure 4: This figure shows the steps of the application label corrector

relationships that only satisfy one constraint. Then, we let human

experts examine such relationships and label them as true or false

with domain knowledges.

For example, WeChat is the most popular application in China,

and Tencent Cloud is a large cloud provider in China. Both traffic

labeled as WeChat and traffic labeled as Tencent Cloud occur many

times in our dataset. We denote WeChat with Aw and Tencent

Cloud with Atc . The result is that sup(Aw ,Atc) has a large value,
while both conf (Aw ⇒ Atc) and conf (Atc ⇒ Aw) are no greater

thanminconf since sup(Aw) and sup(Atc) are too large. Thus, the

frequent item set mining algorithm cannot determine whether these

two applications have a trigger relationship. However, given domain

knowledge, we know that WeChat is also an application belonging

to Tencent Inc, while all the applications of Tencent Inc will use

Tencent Cloud as their CDN service. Thus, we can conclude that a

trigger relationship exists from WeChat to Tencent Cloud.

3.6 Trigger Relationship Mining Algorithm
The methods for mining the trigger relationship are summarized as

algorithm 1. At first, the trigger relationships mined from Slabeled
are added to the graph in line 4. Then all possible relationships

mined from S are enumerated, if such relationship has been added

in the first step, then the relationship is passed. Otherwise, the

relationships that satisfy both constraints are added, the relation-

ships that satisfy none of the constraint are dropped, the remaining

relationships are sent to human experts for further checking.

4 APPLICATION LABEL CORRECTOR
With the trigger relationship analyzer, we compute a trigger re-

lationship graph with multiple trigger relationships among appli-

cations. The next question we aim to answer is: how can we use

the trigger relationship graph to correct the initial labels in the

application label corrector? We first convert incoming TCP flows

to a running application set. Then we predict which application

should be updated to another application and propose an applica-

tion label updating algorithm. The detailed workflow and the steps

are described in this section.

4.1 The Workflow
The application label corrector is run after the DPI engine and aim

to assign a correct new application label to each TCP flow. The

problem is formulated as follows: We are given a sequence of TCP

flows F = {F1, F2, ...Fn }, in which the following information can

be used:

Algorithm 1 Trigger Relationship Mining

Require: Unlabeled Application Set Database S

Require: Labeled Databases Slabeled = SA1
,SA2

, ...SAk
Ensure: Trigger Relationship Graph G = (A,R)

1: for SAi in Slabeled do
2: Compute the trigger set TAi with SAi
3: for A in TAi do
4: Add (Ai ,A) to R

5: end for
6: end for
7: for (Ai ,Aj) IN all possible relationships from S do
8: if NOT ((Ai ,Aj) IN R OR (Aj ,Ai) IN R) then
9: if sup(Ai ,Aj) ≥ minsup AND conf (Ai ⇒ Aj) ≥

minconf then
10: Add (Ai ,Aj) to R

11: else if sup(Ai ,Aj) ≥ minsup OR conf (Ai ⇒ Aj) ≥

minconf then
12: Store (Ai ,Aj) for checking by human experts

13: end if
14: end if
15: end for

• The initial application label of the flow Fi .labelDPI , which
is labeled by the existing DPI engine;

• The start timestamp and end timestamp of the flow;

• The total traffic size of the flow;

• Other detailed information contained in TCP headers;

Our goal is to compute the correct application label Fi .label
for each flow, such that the accuracy of the architecture can be

improved. The workflow of the application label corrector is shown

in Figure 4. There are five key steps in updating the application

labels of the flows.

Since the TCP flows are collected in the router, those flows in-

clude the flows generated by different users. The relationships

between two applications are only meaningful in the same user’s

device. Therefore, we first need to cluster the flows into different

sets for different users.

For the flows of each user, as an online system, we collect flows

from the previous n seconds as "the traffic generated by the cur-

rently running application". Then, the flows from each application

are combined into one flow indicating such application, with the

number of flows and the total size.

IWQoS ’19, June 24–25, 2019, Phoenix, AZ, USA Heyi Tang, Yong Cui, Jianping Wu, Xiaowei Yang, and Zhenjie Yang

There may be applications running in the background. Such

applications may affect the updating algorithm that wewill mention

later. Thus, we should then filter the background applications before

updating the flows to guarantee accuracy.

The next step is to update some applications as other applica-

tions according to the trigger relationship graph, which means that

such applications are triggered by the correct applications. This

problem is formalized as a MAP (maximum a posteriori) estimate

problem [26]. With our analysis, the information we observed is

that, if A triggers B, and A, B are both observed in the traffic, only

A is actually running, the traffic of B is triggered by A.
According to this observation, we define application priorities

according to the trigger relationship graph. Then we design a prior-

ity based application label updating algorithm to obtain a mapping

between applications, and finally use it to update all the flows.

4.2 Clustering Flows by User
The TCP flows are captured by the router and are labeled by the DPI

engine. To update the labels according to the trigger relationships,

we first need to cluster the TCP flows into different sets by user

identifier. The reason is that if an application is triggered by another

application, the two applications must be on one device of the same

user. Two flows from different devices will not be related.

To cluster the TCP flows, we use IP addresses as user identifiers.

In practice, a traffic classification device is usually deployed in an

enterprise network. The network operator knows the range of IP

addresses in the enterprise network. Thus, it is easy to maintain an

IP set for the enterprise network. If either the source address or the

destination address of a flow matches an IP in the IP set, the flow is

assigned to the corresponding IP’s group.

There are two minor issues that we need to consider. If the

enterprise network uses DHCP for allocating IP addresses, the IP

of each user may change over time. We do not believe that this

approach affects the result. Because the IPs do not change very

frequently. Over a short period, the flows from the same IP belong

to the same device; thus, our system will be effective.

The other issue is that the enterprise network may use NAT. Two

users may share the same IP address. To distinguish different users

using the same IP addresses, the port mapping in the NAT devices

should be taken into consideration when assigning flows to users.

4.3 The Flow Set in Previous Seconds
After assigning the flows, we address each flow on a user-by-user

basis. For each user, we should collect the flows in the previous ∆t
seconds. We assume that over a short period, a user will not use

many different applications. Therefore, the flows generated over a

certain period are considered simultaneously generated, and some

are triggered by others.

To satisfy the performance requirements as an online system, we

use a sliding window approach to collect the flows in the same time

period. The sliding window records the initial time stamp once a

flow occurs. After a certain period has passed, the sliding window

sends all the flows that are currently recorded to the next step and

removes all flows that have ended. Then, the sliding window starts

recoding the flows in the next period. The collected flows in the

last period are then processed in subsequent steps.

4.4 Background Application Filter
With the original flows, the background application filter now has

a set of applications with its flow count and the total traffic. We

have observed that background traffic exists in the flows in practice.

An application may run in the background and send heartbeat mes-

sages, but the application is in fact not running, although the traffic

is being captured. Such traffic may affect the accuracy since it may

also exist in the trigger relationship graph. According to algorithm 2

we will mention later, an application A which may trigger other

applications, may make some flows update their application labels

to A, even though A is not actually running in the foreground.

Since most traffic from background applications is heartbeat

traffic, the number of flows and the total traffic are not excessive.

A simple way to filter out the background applications is ignoring

the applications whose flow count and traffic size do not reach a

certain threshold. The threshold is learned with the labeled traffic.

With the background application filter, we finally have a set

containing the applications we observe in foreground traffic.

4.5 MAP Model and Application Priority
With such an application set that we observe in the traffic, our goal

is to predict that, which applications are really running, and which

applications are triggered by other applications. Here we formalize

the problem as an MAP estimate problem as follows.

Definition 6. Application Predicting (AP) Problem
Given an application set A1,A2, ...Am , let xi ∈ {0, 1} to indicate

whether Ai is running, let yi ∈ {0, 1} to indicate whether we ob-

serve Ai in the traffic. The vector y = (y1,y2, ...ym) indicates the

application set in the traffic, x = (x1,x2, ...xm) indicates the set

of applications which are actually running. Let P(xi = 1) = pi ,
Ai and Aj are independent. P(yi = 1|xi = 1) = 1, a running ap-

plication must be observed. A trigger relationship is denoted by

P(yj = 1|yi = 1) = pi j . The AP problem is to find a x ′ to maximize

the posteriori probability P(x = x ′ |y = y′), for a given y = y′, and
the above prior distribution of x .

Lemma 1. AP Problem is NP-hard.
Proof. We prove this lemma by reducing integer linear pro-

gramming [24] to the AP problem. Consider a simplified case that

A1 triggers Ai ,∀i > 1, while any other Ai and Aj are indepen-

dent. In this case we let y′i = 1,∀i ≤ m, then P(x = x ′ |y = y′) =
Σmi=2(x

′
ipi + (1 − x ′i)(1 − pi)p1i). Maximizing the value is a integer

linear programming problem. Thus AP problem is NP-hard. □
We then use a simplified case to inspire us for a heuristic algo-

rithm. The expected number of running application is only one,

thus we assume pi = 1/m,∀i . A typical case is that, Ai and Aj are

observed, while there is a trigger relationship from Ai to Aj . We

use Y11 to denote the event yi = 1,yj = 1, similarly we use X10 to

denote the event xi = 1,x j = 0. We have the following equations.

P(Y11) = P(Y11 |X10) · P(X10) + P(Y11 |X11) · P(X11)

= pi j · (m − 1)/m2 + 1 · 1/m2 = (pi j (m − 1) + 1)/m2

P(X10 |Y11) =
P(Y11 |X10) · P(X10)

P(Y11)
=

pi j (m − 1)

pi j (m − 1) + 1

P(X11 |Y11) =
P(Y11 |X11) · P(X11)

P(Y11)
=

1

pi j (m − 1) + 1

P(X10 |Y11) > P(X11 |Y11) ⇔ pi j > 1/(m − 1)

Trigger Relationship Aware Mobile Traffic Classification IWQoS ’19, June 24–25, 2019, Phoenix, AZ, USA

The equations show that, if pi j is greater than 1/(m − 1), only

Ai is actually running, thus Aj is triggered by Ai , the flows labeled
as Aj should be updated to Ai . In practice,m is a large value, since

there are a lot of applications a user may install, pi j > 1/(m − 1)

is always correct. The application that could be triggered by other

applications should be updated.

With the above-mentioned observations, we are able to update

some applications to others. Then we need to determine the order

of the applications to update them. Each application should be set

priority values for comparison to other applications. If the priority

of application A is greater than the priority of application B, A
has a higher probability to be the running application and a lower

probability to be an application triggered by other applications.

Based on this definition, clearly, when there is a trigger relationship

from A to B, A has a higher priority.

This observation suggests that, we can use topological sort-

ing [12] to compute the priorities of the applications. Topological

sorting on a directed acyclic graph (DAG) is a linear ordering of

vertices such that, for every directed edge uv , vertex u comes be-

fore v in the ordering. In our scenario, the ordering of applications

after topological sorting directly represents the priorities of the

applications.

Since the trigger relationship graph is computed offline in the

trigger relationship analyzer, the priority of the applications can

also be computed offline. In the online phase, we directly use these

priorities to sort the applications.

Another issue is that topological sorting is only valid in a DAG,

whereas the trigger relationship graph is simply a directed graph.

In practice, when generating the relationships in the trigger rela-

tionship analyzer, if the relationships A to B and B to A both exist,

we remove one of the relationships according to domain knowledge.

After addressing all such edges, the graph no longer contains cycles

in our data.

4.6 Updating Application Labels
With the priorities of the applications, we determine the order of

the applications in the current application set. Then, we should

compute which applications are triggered by other applications so

that we can update the labels of the corresponding flows.

One concern is that there may be triggering chains: application

A triggers B, while B triggers C . For example, the content in appli-

cation B is shared in application A, while application B is using the

CDN service of application C . The relationships (A,B) and (B,C)
are both in the trigger relationship graph, but (A,C) is not in the

graph since A and C do not have a direct relationship. However,

concerning the traffic, the flows from both B and C are triggered

by A, and they both need to be updated. In our algorithm, we use a

hash map Ht to address it, where Ht [Ai] stores the applications in
the current set that is triggered by Ai .

The details of our algorithm are shown in Algorithm 2. We use

Hlabel to store the new application label indicating that an ap-

plication should be updated. In line 4, we sort the applications in

increasing order of priority. Thus, the applications with lower prior-

ity are computed first. For each application Ai , we find application

Aj that can trigger it with the highest priority in line 7. Once such

Aj is found, Hlabel [Ai] is updated, and Ai is added to Ht [Aj] to

address the triggering chain case. In lines 11 and 12, we update

all applications in Ht [Ai]. Considering that this procedure is run
in an iterative manner, all applications in the triggering chain are

updated to the root application in the chain. If Ai has not been up-

dated with any Aj , which means that Ai is the running application,
not triggered by any other application, we set Hlabel [Ai] to itself

in line 18.

Algorithm 2 Application Label Updating

Require: Observed Application Set A1,A2, ...An
Require: Trigger Relationship Graph G = (A,R)

Ensure: An hash map Hlabel , storing the new label.

1: Let Hlabel be an empty hash map.

2: Let Ht be empty to store the apps triggered by Ai .
3: Construct application list L = [A1,A2, ...An].
4: Sort L with the priorities in increasing order.

5: for i = 1 TO n do
6: for j = n TO i + 1 do
7: if (L[j],L[i]) IN G .R then
8: Hlabel [L[i]] = L[j]
9: Ht [L[j]].add(L[i])
10: for A IN Ht [L[i]] do
11: Hlabel [A] = L[j]
12: Ht [L[j]].add(A)
13: end for
14: BREAK

15: end if
16: end for
17: if NOT L[i] IN Hlabel then
18: Hlabel [L[i]] = L[i]
19: end if
20: end for

After running the application label updating algorithm, for each

flow in the flow set, we can simply set

Fi .label = Hlabel [Fi .labelDPI]

Thus, the incoming flows are updated to new applications.

The complexity of the algorithm is O(n2). Although there are 3

loops, the loop in lines 11 and 12 only runs once in each iteration.

Since the count of observed application set n is not large, usually

less than 10 in practice, the algorithm represents a small portion of

the total running time in TRAC framework.

5 IMPLEMENTATION AND DEPLOYMENT
TRAC is implemented and deployed in a real-world enterprise net-

work for application usage statistics. In this section, we describe

our implementation for online classification in the context of the

real-world scenario. The architecture is shown in full in Figure. 5.

The offline modules including the trigger relationship analyzer and

the rule generator are run offline and not shown in the figure.

5.1 Traffic Aggregation
The DPI engine is deployed on the gateway router so that the traffic

of all users can be processed. Our first problem is that, the router

should send the classification results to the DPI engine, but building

one connection for each packet is too costly. We use traffic aggrega-

tion to solve this problem. The packets are recorded continuously

until they amount to 1 GB of data and then sent to the DPI engine.

The output of the DPI engine includes multiple records, where

IWQoS ’19, June 24–25, 2019, Phoenix, AZ, USA Heyi Tang, Yong Cui, Jianping Wu, Xiaowei Yang, and Zhenjie Yang

Internet

Application
Label Corrector

Application
Label Corrector

Application
Label Corrector

Router with
DPI Engine

Application
Relationship
Graph

Database for
Storing Stats

Application
Usage Statistics

Application
Recommendation

Abnormal Traffic
Detection

Different Tasks
with Application Labels

Figure 5: This figure shows the deployment in practice

each record contains different types of information, as described

in Section 4. The records are then stored in HDFS [9] for further

processing.

5.2 Parallelized Application Label Corrector
The application label corrector read the information of flows from

HDFS for updating the labels. Here comes the second problem:

although processing one user’s is efficient, there are a lot of users’

traffic passing through the router. To accelerate the updating pro-

cess, we use Spark [39] to process the flows in parallel.With the hive

keyword "GROUP BY", the flows are divided into several groups

by their user identifiers, and different groups of data are sent to

corresponding spark nodes.

In practice, the information of the flows is presented as text files,

they are stored in a specific folder named "unfinished" in each Spark

node. The corrector on each node scans the folder and loads the

flows in the files. Then, the corrector assigns flows new application

labels and stores them in a MySQL cluster. The original text files in

the "unfinished" folder are then removed.

5.3 Storage and Usage Analysis
We use a MySQL [2] cluster to store the statistics of the applications.

Here we face the final problem: storing the detailed information of

all flows costs a lot of storage resources. Too many records in the

database also reduce its performance. Thus, the corrector combines

multiple flows into one record for each hour, each record only in-

cludes the total traffic and total running time of an application in

one hour. The database stores such record, the storage cost is sub-

stantially reduced. In this manner, researchers seeking to conduct

further studies, such as a statistical analysis of application usage,

can fetch the results from the database efficiently.

6 EVALUATION
6.1 Dataset
We use one-month-long real-world data for evaluation. The data

was collected in January, 2019 in an enterprise network. A total of

three individuals volunteered. Their mobile phones were connected

to the router in the enterprise network. Each day, they recorded the

applications that they actually used, and the records were collected

with their captured traffic. The records are used as the ground-truth

for evaluation.

Each flow is labeled with an application label in TRAC. If the

application label is in the corresponding records, we say that the

flow is correctly identified; otherwise, the flow is not correctly

identified.

6.2 Accuracy in Trigger Relationships
We first evaluate the performance of the trigger relationship ana-

lyzer. We choose 100 most popular applications in China and run

an application executor for generating Slabeled mentioned in S 3.6.

The traffic in the one-month-long data is used for generating S. All

mined trigger relationships are manually checked by the human

experts with domain knowledge. As mentioned in S 2.2, there exist

other different trigger relationships that we don’t know, thus a

relationship may be true, false or uncertain.

minsup minconf Count True False Uncertain
10 0.5 20 85.0% 10.0% 5.0%

10 0.1 104 51.9% 17.3% 30.8%

2 0.5 68 39.7% 5.9% 54.4%

Table 1: This table shows how the parameters affect the count of
relationships the trigger relationship analyzer finds.

Totally 80 trigger relationships are mined from the databases

from 41 applications in Slabeled . 68 of them are true while only

5 of them are false. No relationship is mined from the databases

from other 59 applications. As for the the relationships from S,

the results with different parameters are shown in table 1. When

we letminsup = 10 andminconf = 0.5, only 20 trigger relation-

ships are found, but they reach a high accuracy that 17 of them are

true while only 2 of them are false. When we use lowerminsup or

lowerminconf , more relationships can be found, while the accu-

racy decreases. An interesting fact is that, only about 10% of the

relationships are overlapped in two methods, they can complement

each other.

As a result, the unsupervised methods, including mining from

Slabeled and mining from S with strict constraints, can achieve

high accuracy. The relationships from S with loose constraints can

also be used with domain knowledges. Finally the analyzer builds

a trigger relationship graph with 162 edges and stores it for online

classification. Note that more than 30% of relationships found in

the methods are uncertain. Therefore, more scenarios of trigger

relationships should be investigated.

6.3 Classification Accuracy
With such a trigger relationship graph, we then evaluate the classi-

fication accuracy of TRAC. We compare TRAC to the traditional

rule-based DPI engine described in section 2. As for TRAC, ex-

cept for the framework with a complete application label corrector,

we also evaluate TRAC without filtering background applications

in the application label corrector to gain more knowledge of the

framework. Since the size of each flow in different applications are

different, we evaluate the accuracy in both flow count and traffic

size to make the evaluation more convincing.

The one-month-long data includes the data in weekdays of four

weeks. The behaviors of users may vary from week to week, so

we also evaluate the methods in four weeks respectively. Figure 6

shows the statistics of the data. There are 38090 flows in total, the

size of the traffic is about 9.3 GB in total. The users have the most

activities in the second week, about 5.7 GB traffic are captured in

this week, which accounts for about 2/3 of the total. However, the

flow count in the second week is 15889, only accounts for about 2/5

of the total. This is because one volunteer has viewed more videos

in the second week.

Trigger Relationship Aware Mobile Traffic Classification IWQoS ’19, June 24–25, 2019, Phoenix, AZ, USA

Week-1 Week-2 Week-3 Week-4 Total
0

2

4

6

8

10

T
ra

ff
ic

 S
iz

e(
G

B
)

Traffic
Flow Count

0

5000

10000

15000

20000

25000

30000

35000

40000

Figure 6: This figure shows the traffic size
and the flow count in our dataset

Week-1 Week-2 Week-3 Week-4 Total
0.4

0.5

0.6

0.7

0.8

0.9

1.0

A
cc

ur
ac

y

DPI Engine
TRAC without filtering background apps
TRAC

(a) The accuracy in flow count
Week-1 Week-2 Week-3 Week-4 Total

0.4

0.5

0.6

0.7

0.8

0.9

1.0

A
cc

ur
ac

y

DPI Engine
TRAC without filtering background apps
TRAC

(b) The accuracy in traffic

Figure 7: These figures show the accuracy of our method compared to rule-based DPI
engine in our one-month dataset.

The accuracy also varies from week to week. As shown in Fig-

ure 7a and Figure 7b, The accuracy in both flow count and traffic

size has a significant improvement. The accuracy of the DPI engine

is 64.8% in flow count and TRAC reaches 82.2%. As for traffic size,

the accuracy is improved from 70.0% to 86.5%. The application label

corrector successfully finds out plenty of flows which are triggered

by other applications. In section 4.4, we have discussed the effects of

the background application traffic. The results show that, without

the background application filter, the accuracy in flow count can

only reach 72.6%. In the third week, the accuracy even drops down

when we don’t use the filter. Some of the flows correctly labeled in

the DPI engine are updated to an application that is running in the

background.

Another interesting fact is that, the accuracy in flow count is

more stable than the accuracy in traffic size. All the values of the ac-

curacy in flow count in the four weeks are between 78%-86%, while

the values of the accuracy in traffic size are from 81%-97%. This

difference is caused by the imbalance among different applications

in traffic size. Some applications have fewer network activities, of

which the flows only contain some bytes of texts, while the social

network applications may fetch a lot of images. In the first week

and the fourth week, the applications which generates most traffic

are labeled correctly, so the accuracy in traffic size reach more than

95%, while the accuracy in flow count is still about 80%.

6.4 Typical Trigger Relationships
Table 2 shows some of the trigger relationships found by TRAC.

Their percentages of all flows are also shown in this table. There

are 46 trigger relationships seen in the one-month-long data, the

table presents several typical relationships.

The table shows that the most common trigger relationship is the

use of cloud CDN. Alibaba cloud is the most common cloud CDN

in the dataset. Several different applications owned by different

companies are using the same CDN from Alibaba Cloud. This result

is consistent with the fact that Alibaba Cloud is the largest cloud

service provider in China. Tencent Cloud is usually used by the

applications owned by Tencent Inc. Because of the widely use

of Wechat, the most popular IM application in China, the trigger

relationship from Wechat to Tencent Cloud is the most common in

the data.

Except for the relationship of cloud CDN, other kinds of relation-

ships are also seen in the data. The volunteers view videos shared

Triggered Running Percentage Relationship
App App Type

Alibaba Cloud Sina Weibo 1.29% CDN

Alibaba Cloud Youku 0.93% CDN

Alibaba Cloud Xiami Music 0.90% CDN

Alibaba Cloud Auto Navi 0.72% CDN

Tencent Cloud Wechat 4.79% CDN

Tencent Cloud Tencent Video 0.55% CDN

Miaopai Sina Weibo 0.40% Sharing

QQ Mail Wechat 0.44% Service

Baidu Map Ctrip 0.04% Service

Table 2: This table shows some typical trigger relationships found
by TRAC in our evaluation.

from Miaopai in Sina Weibo. Wechat provides a service that we can

check QQ Mail in it, this case is also seen in the data.

7 RELATEDWORK
Traffic classification has been investigated for networkmanagement

tasks. Several different techniques on traditional traffic classifica-

tion are summarized in [13]. With the growing usage of mobile

devices, recent studies focus on identifying the mobile traffic in ap-

plication granularity. A survey of these works can be found in [29].

Most researches [18, 19, 34, 36–38] find reliable identifiers for build-

ing rule-based algorithms at a per-flow granularity. For instance,

the identifiers in HTTP User-Agents are investigated in [36]. App-

Print [18] and FLOWR [37] both extract signatures from the URL

in HTTP traffic. SAMPLES [38] proposes a systematic framework

that finds the identifiers in different fields in an automated fashion.

AMPLES [19] further enhances the identifier matching with fuzzy

match. In practice, the identifiers in these studies can be used to

enhance a DPI engine for identifying applications. However, such

methods do not consider relationships among applications, thus,

the accuracy will reach a limit since more and more applications

use cloud CDNs.

Recently, numerous studies [3, 5–7, 11, 14, 22, 25, 27, 28, 31–33]

have attempted to use statistical features of the flows and leverage

machine learning methods. AppScanner [28] focuses on encrypted

traffic and tries different supervised machine learning methods

including SVM and random forest. Aceto1 et al. [3] try several

different deep learning models and use first N bytes of a packet

as its feature. These studies show good results, but they are costly

thus hard to deploy in practice.

IWQoS ’19, June 24–25, 2019, Phoenix, AZ, USA Heyi Tang, Yong Cui, Jianping Wu, Xiaowei Yang, and Zhenjie Yang

With the results of mobile traffic classification, researchers can

conduct further studies [15–17, 21, 23, 35]. MAPPER [23] proposes a

system that provides system administrators capabilities of enforcing

policies on mobile traffic. Kuo et al. [17] investigate the relationship

between application usages and the design of backend systems.

Jiang et al. [15] try predicting the future application usage for

improving user’s experience. Thus traffic classification frameworks

with high accuracy are required and our work just meets the actual

need.

8 CONCLUSION
In this paper, we investigate the traffic classification problem in

practice. We find out that the applications have complicated re-

lationships with each other, which greatly affect the accuracy of

traffic classification. We design the TRAC framework with a trigger

relationship model to solve the problem and improve accuracy. The

evaluation on a real world data set shows that TRAC achieves a

significant improvement in accuracy.

ACKNOWLEDGMENTS
This work is supported by NSFC (No. 61872211) and National Key

R&D Program of China under Grant 2017YFB1010002.

REFERENCES
[1] [n.d.]. Monkeyrunner. developer.android.com/studio/test/monkeyrunner/.

[2] [n.d.]. MySQL. https://www.mysql.com/.

[3] G. Aceto, D. Ciuonzo, A. Montieri, and A. Pescapé. 2018. Mobile Encrypted Traffic

Classification Using Deep Learning. In TMA ’18. 1–8. https://doi.org/10.23919/

TMA.2018.8506558

[4] Alfred V. Aho and Margaret J. Corasick. 1975. Efficient String Matching: An Aid

to Bibliographic Search. Commun. ACM 18, 6 (June 1975), 333–340.

[5] Khaled Al-Naami, Swarup Chandra, Ahmad Mustafa, Latifur Khan, Zhiqiang Lin,

Kevin Hamlen, and Bhavani Thuraisingham. 2016. Adaptive Encrypted Traffic

Fingerprinting with Bi-directional Dependence. In ACSAC ’16. ACM, New York,

NY, USA, 177–188. https://doi.org/10.1145/2991079.2991123

[6] Hasan Faik Alan and Jasleen Kaur. 2016. Can Android Applications Be Identified

Using Only TCP/IP Headers of Their Launch Time Traffic?. InWiSec ’16. ACM,

New York, NY, USA, 61–66. https://doi.org/10.1145/2939918.2939929

[7] and Z. Chen, L. Zhang, Q. Yan, B. Yang, and L. Peng and. 2016. TrafficAV: An

effective and explainable detection of mobile malware behavior using network

traffic. In IWQoS ’16. 1–6. https://doi.org/10.1109/IWQoS.2016.7590446

[8] Christian Borgelt. 2012. Frequent item set mining. Wiley Interdisciplinary Reviews:
Data Mining and Knowledge Discovery 2, 6 (2012), 437–456. https://doi.org/10.

1002/widm.1074

[9] Dhruba Borthakur et al. 2008. HDFS architecture guide. Hadoop Apache Project
53 (2008), 1–13.

[10] Y. Chen, J. Liu, and Y. Cui. 2016. Inter-player Delay Optimization in Multiplayer

Cloud Gaming. In 2016 IEEE 9th International Conference on Cloud Computing
(CLOUD). 702–709. https://doi.org/10.1109/CLOUD.2016.0098

[11] Z. Chen, B. Yu, Y. Zhang, J. Zhang, and J. Xu. 2016. Automatic Mobile Appli-

cation Traffic Identification by Convolutional Neural Networks. In 2016 IEEE
Trustcom/BigDataSE/ISPA. 301–307. https://doi.org/10.1109/TrustCom.2016.0077

[12] Thomas H Cormen, Charles E Leiserson, Ronald L Rivest, and Clifford Stein. 2009.

Introduction to algorithms. MIT press.

[13] A. Dainotti, A. Pescape, and K. C. Claffy. 2012. Issues and future directions in

traffic classification. IEEE Network 26, 1 (2012), 35–40. https://doi.org/10.1109/

MNET.2012.6135854

[14] Y. Fu, H. Xiong, X. Lu, J. Yang, and C. Chen. 2016. Service Usage Classification

with Encrypted Internet Traffic in Mobile Messaging Apps. IEEE Transactions on
Mobile Computing 15, 11 (Nov 2016), 2851–2864. https://doi.org/10.1109/TMC.

2016.2516020

[15] Yubo Jiang, Xin Du, and Tao Jin. 2019. Using combined network information

to predict mobile application usage. Physica A: Statistical Mechanics and its
Applications 515 (2019), 430 – 439. https://doi.org/10.1016/j.physa.2018.09.135

[16] Haojian Jin, Minyi Liu, Kevan Dodhia, Yuanchun Li, Gaurav Srivastava, Matthew

Fredrikson, Yuvraj Agarwal, and Jason I. Hong. 2018. Why Are They Collecting

My Data?: Inferring the Purposes of Network Traffic in Mobile Apps. Proc. ACM

Interact. Mob. Wearable Ubiquitous Technol. 2, 4, Article 173 (Dec. 2018), 27 pages.
https://doi.org/10.1145/3287051

[17] J. Kuo, H. Ruan, C. Chan, and C. Lei. 2017. Investigation of mobile App behaviors,

from the aspect of real world mobile backend system. In AEECT ’17. 1–6. https:

//doi.org/10.1109/AEECT.2017.8257762

[18] Stanislav Miskovic, Gene Moo Lee, Yong Liao, and Mario Baldi. [n.d.]. AppPrint:

Automatic Fingerprinting of Mobile Applications in Network Traffic. In PAM ’15.
[19] G. Ranjan, A. Tongaonkar, and R. Torres. 2016. Approximate matching of persis-

tent LExicon using search-engines for classifying Mobile app traffic. In Infocom
’16. 1–9. https://doi.org/10.1109/INFOCOM.2016.7524386

[20] Abbas Razaghpanah, Arian Akhavan Niaki, Narseo Vallina-Rodriguez, Srikanth

Sundaresan, Johanna Amann, and Phillipa Gill. 2017. Studying TLS Usage in

Android Apps. In CoNEXT ’17. ACM, New York, NY, USA, 350–362. https:

//doi.org/10.1145/3143361.3143400

[21] Jingjing Ren, Ashwin Rao, Martina Lindorfer, Arnaud Legout, and David Choffnes.

2016. ReCon: Revealing and Controlling PII Leaks in Mobile Network Traffic. In

MobiSys ’16. 361–374. https://doi.org/10.1145/2906388.2906392

[22] Brendan Saltaformaggio, Hongjun Choi, Kristen Johnson, Yonghwi Kwon, Qi

Zhang, Xiangyu Zhang, Dongyan Xu, and John Qian. 2016. Eavesdropping on

Fine-Grained User Activities Within Smartphone Apps Over Encrypted Network

Traffic. InWOOT ’16. USENIX Association, Austin, TX.

[23] Amedeo Sapio, Yong Liao, Mario Baldi, Gyan Ranjan, Fulvio Risso, Alok Ton-

gaonkar, Ruben Torres, and Antonio Nucci. 2014. Per-user Policy Enforcement

on Mobile Apps Through Network Functions Virtualization. In MobiArch ’14.
ACM, New York, NY, USA, 37–42. https://doi.org/10.1145/2645892.2645896

[24] Alexander Schrijver. 1998. Theory of linear and integer programming. John Wiley

& Sons.

[25] M. Shen, M. Wei, L. Zhu, and M. Wang. 2017. Classification of Encrypted Traffic

With Second-Order Markov Chains and Application Attribute Bigrams. IEEE
Transactions on Information Forensics and Security 12, 8 (Aug 2017), 1830–1843.

https://doi.org/10.1109/TIFS.2017.2692682

[26] H.W. Sorenson. 1980. Parameter estimation: principles and problems. M. Dekker.

[27] Tim Stöber, Mario Frank, Jens Schmitt, and Ivan Martinovic. 2013. Who Do You

Sync You Are?: Smartphone Fingerprinting via Application Behaviour. In WiSec
’13. ACM, New York, NY, USA, 7–12. https://doi.org/10.1145/2462096.2462099

[28] V. F. Taylor, R. Spolaor, M. Conti, and I. Martinovic. 2016. AppScanner: Automatic

Fingerprinting of Smartphone Apps from Encrypted Network Traffic. In EuroS&P
’16. 439–454. https://doi.org/10.1109/EuroSP.2016.40

[29] A. Tongaonkar. 2016. A Look at the Mobile App Identification Landscape. IEEE
Internet Computing 20, 4 (July 2016), 9–15. https://doi.org/10.1109/MIC.2016.77

[30] Alok Tongaonkar, Shuaifu Dai, Antonio Nucci, and Dawn Song. 2013. Under-

standing Mobile App Usage Patterns Using In-App Advertisements. In PAM ’13,
Matthew Roughan and Rocky Chang (Eds.). Springer Berlin Heidelberg, Berlin,

Heidelberg, 63–72.

[31] Q. Wang, A. Yahyavi, B. Kemme, and W. He. 2015. I know what you did on your

smartphone: Inferring app usage over encrypted data traffic. In CNS ’15. 433–441.
https://doi.org/10.1109/CNS.2015.7346855

[32] Shanshan Wang, Zhenxiang Chen, Qiben Yan, Ke Ji, Lin Wang, Bo Yang, and

Mauro Conti. 2018. Deep and Broad Learning Based Detection of Android

Malware via Network Traffic. In IWQoS ’18. 1–6.
[33] S. Wang, Q. Yan, Z. Chen, B. Yang, C. Zhao, andM. Conti. 2018. Detecting Android

Malware Leveraging Text Semantics of Network Flows. IEEE Transactions on
Information Forensics and Security 13, 5 (May 2018), 1096–1109. https://doi.org/

10.1109/TIFS.2017.2771228

[34] W. Wang and J. Bickford. 2016. WhatApp: Modeling mobile applications by

domain names. InWiMob ’16. 1–10. https://doi.org/10.1109/WiMOB.2016.7763253

[35] Xuetao Wei, Nicholas C. Valler, Harsha V. Madhyastha, Iulian Neamtiu, and

Michalis Faloutsos. 2017. Characterizing the behavior of handheld devices and

its implications. Computer Networks 114 (2017), 1 – 12. https://doi.org/10.1016/j.

comnet.2017.01.003

[36] Qiang Xu, Jeffrey Erman, Alexandre Gerber, Zhuoqing Mao, Jeffrey Pang, and

Shobha Venkataraman. 2011. Identifying Diverse Usage Behaviors of Smartphone

Apps. In IMC ’11. ACM, New York, NY, USA, 329–344. https://doi.org/10.1145/

2068816.2068847

[37] Q. Xu, Y. Liao, S. Miskovic, Z. M. Mao, M. Baldi, A. Nucci, and T. Andrews. 2015.

Automatic generation of mobile app signatures from traffic observations. In

Infocom ’15. 1481–1489. https://doi.org/10.1109/INFOCOM.2015.7218526

[38] Hongyi Yao, Gyan Ranjan, Alok Tongaonkar, Yong Liao, and Zhuoqing Morley

Mao. 2015. SAMPLES: Self Adaptive Mining of Persistent LExical Snippets

for Classifying Mobile Application Traffic. In MobiCom ’15. 439–451. https:

//doi.org/10.1145/2789168.2790097

[39] Matei Zaharia, Mosharaf Chowdhury, Michael J Franklin, Scott Shenker, and Ion

Stoica. 2010. Spark: Cluster computing with working sets. HotCloud 10, 10-10

(2010), 95.

[40] L. Zhang, F. Wang, and J. Liu. 2015. Improve Quality of Experience for Mobile

Instant Video Clip Sharing. In ICDCS ’15. 780–781. https://doi.org/10.1109/

ICDCS.2015.106

developer.android.com/studio/test/monkeyrunner/
https://www.mysql.com/
https://doi.org/10.23919/TMA.2018.8506558
https://doi.org/10.23919/TMA.2018.8506558
https://doi.org/10.1145/2991079.2991123
https://doi.org/10.1145/2939918.2939929
https://doi.org/10.1109/IWQoS.2016.7590446
https://doi.org/10.1002/widm.1074
https://doi.org/10.1002/widm.1074
https://doi.org/10.1109/CLOUD.2016.0098
https://doi.org/10.1109/TrustCom.2016.0077
https://doi.org/10.1109/MNET.2012.6135854
https://doi.org/10.1109/MNET.2012.6135854
https://doi.org/10.1109/TMC.2016.2516020
https://doi.org/10.1109/TMC.2016.2516020
https://doi.org/10.1016/j.physa.2018.09.135
https://doi.org/10.1145/3287051
https://doi.org/10.1109/AEECT.2017.8257762
https://doi.org/10.1109/AEECT.2017.8257762
https://doi.org/10.1109/INFOCOM.2016.7524386
https://doi.org/10.1145/3143361.3143400
https://doi.org/10.1145/3143361.3143400
https://doi.org/10.1145/2906388.2906392
https://doi.org/10.1145/2645892.2645896
https://doi.org/10.1109/TIFS.2017.2692682
https://doi.org/10.1145/2462096.2462099
https://doi.org/10.1109/EuroSP.2016.40
https://doi.org/10.1109/MIC.2016.77
https://doi.org/10.1109/CNS.2015.7346855
https://doi.org/10.1109/TIFS.2017.2771228
https://doi.org/10.1109/TIFS.2017.2771228
https://doi.org/10.1109/WiMOB.2016.7763253
https://doi.org/10.1016/j.comnet.2017.01.003
https://doi.org/10.1016/j.comnet.2017.01.003
https://doi.org/10.1145/2068816.2068847
https://doi.org/10.1145/2068816.2068847
https://doi.org/10.1109/INFOCOM.2015.7218526
https://doi.org/10.1145/2789168.2790097
https://doi.org/10.1145/2789168.2790097
https://doi.org/10.1109/ICDCS.2015.106
https://doi.org/10.1109/ICDCS.2015.106

	Abstract
	1 Introduction
	2 TRAC Overview
	2.1 Traffic Classification Problem
	2.2 Application Relationships
	2.3 TRAC Design
	2.4 Challenges of Each Component

	3 Trigger Relationship Analyzer
	3.1 The Workflow
	3.2 Converting TCP Flows to Application Sets
	3.3 Relationships without Information
	3.4 Relationships from Genarated Flows
	3.5 Relationships from Domain Knowledge
	3.6 Trigger Relationship Mining Algorithm

	4 Application Label Corrector
	4.1 The Workflow
	4.2 Clustering Flows by User
	4.3 The Flow Set in Previous Seconds
	4.4 Background Application Filter
	4.5 MAP Model and Application Priority
	4.6 Updating Application Labels

	5 Implementation and Deployment
	5.1 Traffic Aggregation
	5.2 Parallelized Application Label Corrector
	5.3 Storage and Usage Analysis

	6 Evaluation
	6.1 Dataset
	6.2 Accuracy in Trigger Relationships
	6.3 Classification Accuracy
	6.4 Typical Trigger Relationships

	7 Related Work
	8 Conclusion
	Acknowledgments
	References

